8,943 research outputs found

    Genotype and Genotype x Environment Interaction Effects on Forage Yield and Quality of Intermediate Wheatgrass in Swards

    Get PDF
    Genetic differences among cultivars or strains for specific traits can be significantly reduced or increased by differential genotypic responses to environments. The objective of this study was to determine the relative magnitude of genotype and genotype x environment interaction effects, which are due to differential responses, on forage yield and quality of intermediate wheatgrass [Thinopyrum intermedium (Host) Barkworth & D.R. Dewey] when grown in seeded swards in the central Great Plains. Thirty-four strains (genotypes), which included cultivars, experimental strains, and PI lines, were grown in replicated trials at Mead, North Platte, and Alliance, NE. The three sites differed markedly in precipitation and length of growing season. There were significant differences among strains for all evaluated traits. Genotype x location and genotype x year interaction effects were not significant for in vitro dry matter digestibility (IVDMD), indicating that this trait is quite stable across environments. Genotype x location interaction effects were significant for forage yield and protein concentration; genotype x year effects were significant for forage yield. Spearman rank correlations, used to test for consistency of ranking of the strains across environments, were high and significant for IVDMD, but were low and usually not significant for forage yield. Improving IVDMD should be emphasized in intermediate wheatgrass breeding programs, since there is substantial genetic variation for IVDMD, it is stable across environments, and it can improve livestock production per hectare

    Performance of differenced range data types in Voyager navigation

    Get PDF
    Voyager radio navigation made use of a differenced rage data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter-to-Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed

    Application of ARMA modeling to multicomponent signals

    Get PDF
    This paper investigates the problem of estimating the parameters of a multicomponent signal observed in noise. The process is modeled las a special nonstationary autoregressive moving average (ARMA) process. The parameters of the multicomponent signal are determined from the spectral estimate of the ARMA model The spectral lines are closely spaced and the ARMA model must be determined from very short data records. Two high-resolution ARMA algorithms are developed for determining the spectral estimates. The first ARMA algorithm modifies the extended Prony method to account for the nonstationary aspects of noise in the model.For comPonents signals with good signal to noise ratio (SNR) this algorithm provides excellent results, but for a lower SNR the performance degrades resulting in a loss in resolution. The second algorithm is based on the work of Cadzow. The algorithm presented overcomes the difficulties of Cadzow's and Kaye's algorithms and provides the coefficients for the complete model not just the spen ral estimate. This algorithm performs well in resolving multicomponent signals when the SNR is low

    Coherent Optical Spectroscopy Of Molecules And Molecular Beams

    Get PDF
    This paper presents our recent work on coherent optical spectroscopy of molecules and molecular beams. The theory for these nonlinear optical effects is summarized and related to the measurements in the gas phase and in the condensed phase. Finally, we discuss the importance of these methods, which disentangle the inhomogeneous optical resonances, in understanding nonradiative and optical dephasing processes

    Testing metapopulation concepts: effects of patch characteristics and neighborhood occupancy on the dynamics of an endangered lagomorph

    Get PDF
    Metapopulation ecology is a field that is richer in theory than in empirical results. Many existing empirical studies use an incidence function approach based on spatial patterns and key assumptions about extinction and colonization rates. Here we recast these assumptions as hypotheses to be tested using 18 years of historic detection survey data combined with four years of data from a new monitoring program for the Lower Keys marsh rabbit. We developed a new model to estimate probabilities of local extinction and colonization in the presence of nondetection, while accounting for estimated occupancy levels of neighboring patches. We used model selection to identify important drivers of population turnover and estimate the effective neighborhood size for this system. Several key relationships related to patch size and isolation that are often assumed in metapopulation models were supported: patch size was negatively related to the probability of extinction and positively related to colonization, and estimated occupancy of neighboring patches was positively related to colonization and negatively related to extinction probabilities. This latter relationship suggested the existence of rescue effects. In our study system, we inferred that coastal patches experienced higher probabilities of extinction and colonization than interior patches. Interior patches exhibited higher occupancy probabilities and may serve as refugia, permitting colonization of coastal patches following disturbances such as hurricanes and storm surges. Our modeling approach should be useful for incorporating neighbor occupancy into future metapopulation analyses and in dealing with other historic occupancy surveys that may not include the recommended levels of sampling replication

    Testing metapopulation concepts: effects of patch characteristics and neighborhood occupancy on the dynamics of an endangered lagomorph

    Get PDF
    Metapopulation ecology is a field that is richer in theory than in empirical results. Many existing empirical studies use an incidence function approach based on spatial patterns and key assumptions about extinction and colonization rates. Here we recast these assumptions as hypotheses to be tested using 18 years of historic detection survey data combined with four years of data from a new monitoring program for the Lower Keys marsh rabbit. We developed a new model to estimate probabilities of local extinction and colonization in the presence of nondetection, while accounting for estimated occupancy levels of neighboring patches. We used model selection to identify important drivers of population turnover and estimate the effective neighborhood size for this system. Several key relationships related to patch size and isolation that are often assumed in metapopulation models were supported: patch size was negatively related to the probability of extinction and positively related to colonization, and estimated occupancy of neighboring patches was positively related to colonization and negatively related to extinction probabilities. This latter relationship suggested the existence of rescue effects. In our study system, we inferred that coastal patches experienced higher probabilities of extinction and colonization than interior patches. Interior patches exhibited higher occupancy probabilities and may serve as refugia, permitting colonization of coastal patches following disturbances such as hurricanes and storm surges. Our modeling approach should be useful for incorporating neighbor occupancy into future metapopulation analyses and in dealing with other historic occupancy surveys that may not include the recommended levels of sampling replication

    Electrophysiological correlates of high-level perception during spatial navigation

    Get PDF
    We studied the electrophysiological basis of object recognition by recording scalp\ud electroencephalograms while participants played a virtual-reality taxi driver game.\ud Participants searched for passengers and stores during virtual navigation in simulated\ud towns. We compared oscillatory brain activity in response to store views that were targets or\ud nontargets (during store search) or neutral (during passenger search). Even though store\ud category was solely defined by task context (rather than by sensory cues), frontal ...\ud \u

    Information dynamics: patterns of expectation and surprise in the perception of music

    Get PDF
    This is a postprint of an article submitted for consideration in Connection Science © 2009 [copyright Taylor & Francis]; Connection Science is available online at:http://www.tandfonline.com/openurl?genre=article&issn=0954-0091&volume=21&issue=2-3&spage=8

    Research and Development of Automated Eddy Current Testing for Composite Overwrapped Pressure Vessels

    Get PDF
    Eddy current testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated
    • …
    corecore